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Abstract
Theories of access consciousness address how it is that some mental states but
not others are available for evaluation, choice behavior, and verbal report. Farah,
O’Reilly, and Vecera (1994) argue that quality of representation is critical; De-
haene, Sergent, and Changeux (2003) argue that the ability to communicate rep-
resentations is critical. We present aprobabilistic information transmissionor
PIT model that suggests both of these conditions are essential for access con-
sciousness. Having successfully modeled data from the repetition priming litera-
ture in the past, we use the PIT model to account for data from two experiments
on subliminal priming, showing that the model produces priming even in the ab-
sence of accessibility and reportability of internal states. The model provides a
mechanistic basis for understanding the dissociation of priming and awareness.

Philosophy has made many attempts to identify distinct aspects of consciousness. Perhaps
the most famous effort is Block’s (1995) delineation of phenomenal and access conscious-
ness. Phenomenal consciousness has to do with “what it is like” to experience chocolate
or a pin prick. Access consciousness refers to internal states whose content is “(1) inferen-
tially promiscuous, i.e., poised to be used as a premise in reasoning, (2) poised for control
of action, and (3) poised for rational control of speech.” (p. 230) The scientific study of con-
sciousness has exploded in the past six years, and an important catalyst for this explosion
has been the decision to focus on the problem of access consciousness: how is it that some
mental states but not others become available for evaluation, choice behavior, verbal report,
and storage in working memory. Another reason for the recent explosion of consciousness
research is the availability of functional imaging techniques to explore differences in brain
activation between conscious and unconscious states, as well as the development of clever
psychological experiments that show that a stimulus that is not consciously perceived can
nonetheless influence cognition, which we describe shortly.

1 Subliminal Priming

The phenomena we address utilize an experimental paradigm known asrepetition priming.
Priming refers to an improvement in efficiency in processing a stimulus item as a result
of previous exposure to the item. Efficiency is defined in terms of shorter response times,
lower error rates, or both. A typical long-term perceptual priming experiment consists of
a study phase during which participants are asked to read aloud a list of words, and a test
phase during which participants must name or categorize a series of words, presented one
at a time. Reaction time is lower and/or accuracy is higher for test words that were also on
the study list. Repetition priming occurs without strategic effort on the part of participants,
and therefore appears to be a low level mechanism of learning, which likely serves as the
mechanism underlying the refinement of cognitive skills with practice.



In traditional studies, priming issupraliminal—the prime is consciously perceived. In the
studies we model here, primes aresubliminal. Subliminal priming addresses fundamental
issues concerning conscious access: How is it that a word or image that cannot be identified,
detected, or even discriminated in forced choice can nonetheless influence the processing
of a subsequent stimulus word? Answering this question in a computational framework
would be a significant advance toward understanding the nature of access consciousness.

2 Models of Conscious and Unconscious Processing

In contrast to the wealth of experimental data, and the large number of speculative and
philosophical papers on consciousness, concrete computational models are rare. The do-
main of consciousness is particularly ripe for theoretical perspectives, because it is a sig-
nificant contribution to simply provide an existence proof of a mechanism that can explain
specific experimental data. Ordinarily, a theorist faces skepticism when presenting a model;
it often seems that hundreds of alternative, equally plausible accounts must exist. However,
when addressing data deemed central to issues of consciousness, simply providing a con-
crete handle on the phenomena serves to demystify consciousness and bring it into the
realm of scientific understanding.

We are familiar with only three computational models that address specific experimental
data in the domain of consciousness. We summarize these models, and then present a
novel model and describe its relationship to the previous efforts. Farah, O’Reilly, and Ve-
cera (1994) were the first to model specific phenomena pertaining to consciousness in a
computational framework. The phenomena involve prosopagnosia, a deficit of overt face
recognition following brain damage. Nonetheless, prosopagnosia patients exhibit residual
covert recognition by a variety of tests. For example, when patients are asked to categorize
names as famous or nonfamous, their response times are faster to a famous name when the
name is primed by a picture of a semantically related face (e.g., the name “Bill Clinton”
when preceded by a photograph of Hillary), despite the fact that they could not identify the
related face. Farah et al. model face recognition in a neural network, and show that when
the network is damaged, it loses the ability to perform tasks requiring high fidelity represen-
tations (e.g., identification) but not tasks requiring only coarse information (e.g., semantic
priming). They argue that conscious perception is associated with a certain minimal quality
of representation.

Dehaene and Naccache (2001) outline a framework based on Baars’ (1989) notion of con-
scious states as residing in a global workspace. They describe the workspace as a “dis-
tributed neural system...with long-distance connectivity that can potentially interconnect
multiple specialized brain areas in a coordinated, though variable manner.” (p. 13) De-
haene, Sergent, and Changeaux (2003) implement this framework in a complicated archi-
tecture of integrate-and-fire neurons and show that the model can qualitatively account for
theattentional blinkphenomenon. The attentional blink is observed in experiments where
participants are shown a rapid series of stimuli, which includes two targets (T1 and T2).
If T2 appears shortly after T1, the ability to report T2 drops, as if attention is distracted.
Dehane et al. explain this phenomenon as follows. When T1 is presented, its activation
propagates to frontal cortical areas (the global workspace). Feedback connections lead to
a resonance between frontal and posterior areas, which strengthen T1 but block T2 from
entering the workspace. If the T1-T2 lag is sufficiently great, habituation of T1 sufficiently
weakens the representation such that T2 can enter the workspace and suppress T1. In this
account, conscious access is achieved via resonance between posterior and frontal areas.

Although the Farah et al. and Dehaene et al. models might not seem to have much in
common, they both make claims concerning what is required to achieve functional con-
nectivity between perceptual and response systems. Farah et al. focus on aspects of the
representation; Dehaene et al. focus on a pathway through which representations can be



communicated. These two aspects are not incompatible, and in fact, a third model incorpo-
rates both. Mathis and Mozer (1996) describe an architecture with processing modules for
perceptual and response processes, implemented as attractor neural nets. They argue that in
order for a representation in some perceptual module to be assured of influencing a response
module, (a) it must have certain characteristics–temporal persistence and well-formedness–
which is quite similar to Farah et al.’s notion of quality, and (b) the two modules must be
interconnected—which is the purpose of Dehaene et al.’s global workspace. The model has
two limitations that restrict its value as a contemporary account of conscious access. First,
it addressed classical subliminal priming data, but more reliable data has recently been
reported. Second, like the other two models, Mathis and Mozer used a complex neural
network architecture with arbitrary assumptions built in, and the sensitivity of the model’s
behavior to these assumptions is far from clear. In this paper, we present a model that em-
bodies the same assumptions as Mathis and Mozer, but overcomes its two limitations, and
explains subliminal-priming data that has yet to be interpreted via a computational model.

3 The Probabilistic Information Transmission (PIT) Framework

Our model is based on theprobabilistic information transmissionor PIT framework of
Mozer, Colagrosso, and Huber (2002, 2003). The framework characterizes the transmission
of information from perceptual to response systems, and how the time course of informa-
tion transmission changes with experience (i.e., priming). Mozer et al. used this framework
to account for a variety of facilitation effects from supraliminal repetition priming.

The framework describes cognition in terms of a collection of information-processingpath-
ways, and supposes that any act of cognition involves coordination among multiple path-
ways. For example, to model a letter-naming task where a letter printed in upper or lower
case is presented visually and the letter must be named, the framework would assume a
perceptual pathwaythat maps the visual input to an identity representation, and aresponse
pathwaythat maps a identity representation to a naming response. The framework is for-
malized as a probabilistic model: the pathway input and output are random variables and
microinference in a pathway is carried out by Bayesian belief revision.

The framework captures the time course of information processing for a single experi-
mental trial. To elaborate, consider a pathway whose input at timet is a discrete random
variable, denotedX(t), which can assume valuesx1, x2, x3, . . . , xnx corresponding to al-
ternative input states. Similarly, the output of the pathway at timet is a discrete random
variable, denotedY (t), which can assume valuesy1, y2, y3, . . . , yny

. For example, in the
letter-naming task, the input to the perceptual pathway would be one ofnx = 52 visual
patterns corresponding to the upper- and lower-case letters of the alphabet, and the output
is one ofny = 26 letter identities. To present a particular input alternative, sayxi, to the
model forT time steps, we specifyX(t) = xi for t = 1 . . . T , and allow the model to
compute P(Y (t) | X(1) . . . X(t)).

A pathway is modeled as a dynamic Bayes network; the minimal version of the model
used in the present simulations is simply a hidden Markov model, where theX(t) are
observations and theY (t) are inferred state (see Figure 1a). In typical usage, an HMM
is presented with a sequence of distinct inputs, whereas we maintain the same input for
many successive time steps; and an HMM transitions through a sequence of distinct hidden
states, whereas we attempt to converge with increasing confidence on a single state.

Figure 1b illustrates the time course of inference in a single pathway with 52 input and
26 output alternatives and two-to-one associations. The solid line in the Figure shows, as
a function of timet, P(Y (t) = yi | X(1) = x2i . . . X(t) = x2i), i.e., the probability
that inputi (say, the visual pattern of an upper case O) will produce its target output (the
letter identity). Evidence for the target output accumulates gradually over time, yielding a
speed-accuracy curve that relates the number of iterations to the accuracy of identification.
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Figure 1:(a) basic pathway architecture—a hidden Markov model; (b) time course of inference in a
pathway when the letter O is presented, causing activation of both O and the visually similar Q.

The exact shape of the speed-accuracy curve—the pathway dynamics—are determined by
three probability distributions, which embody the knowledge and past experience of the
model. First, P(Y (0)) is theprior distribution over outputs in the absence of any informa-
tion about the input. Second, P(Y (t) | Y (t − 1)) characterizes how the pathway output
evolves over time. We assume the transition probability matrix serves as a memory with
diffusion, i.e., P(Y (t) = yi|Y (t− 1) = yj) = (1−β)δij +βP(Y (0) = yi), whereβ is the
diffusion constant andδij is the Kronecker delta. Third, P(X(t) | Y (t)) characterizes the
strength of associationbetween inputs and outputs. The greater the association strength,
the more rapidly that information aboutX will be communicated toY . We parameterize
this distribution as P(X(t) = xi|Y (t) = yj) ∼ 1 +

∑
k γikαkj , whereαij indicates the

frequency of experience with the association between statesxi andyj , andγik specifies the
similarity between statesxi andxk. (Although the representation of states is localist, theγ
terms allow us to design in the similarity structure inherent in a distributed representation.)
These association strengths are highly constrained by the task structure and the similarity
structure and familiarity of the inputs.

Fundamental to the framework is the assumption that with each experience, a pathway be-
comes more efficient at processing an input. Efficiency is reflected by a shift in the speed-
accuracy curve to the left. In Mozer, Colagrosso, and Huber (2002, 2003), we propose two
distinct mechanisms to model phenomena of supraliminal priming. First, the association
frequencies,αij , are increased following a trial in whichxi leads to activation ofyj , re-
sulting in more efficient transmission of information, corresponding to an increased slope
of the solid line in Figure 1b. The increase is Hebbian, based on the maximum activation
achieved byxi andyj : ∆αij = η maxt P(X(t) = xi)P(Y (t) = yj), whereη is a step size.
Second, the priors, which serve as a model of the environment, are increased to indicate a
greater likelihood of the same output occurring again in the future. In modeling data from
supraliminal priming, we found that the increases to association frequencies are long last-
ing, but the increases to the priors decay over the course of a few minutes or a few trials.
As a result, the prior updating does not play into the simulation we report here; we refer
the reader to Mozer, Colagrosso, and Huber (2003) for details.

4 Access Consciousness and PIT

We have described the operation of a single pathway, but to model any cognitive task,
we require a series of pathways in cascade. For a simple choice task, we use a percpet-
ual pathway cascaded to a response pathway. The interconnection between the pathways
is achieved by copying the output of the perceptual pathway,Y p(t), to the input of the
response pathway,Xr(t), at each timet.

This multiple-pathway architecture allows us to characterize the notion of access con-
sciousness. Considering the output of the perceptual pathway, access is achieved when:
(1) the output representation is sufficient to trigger the correct behavior in the response
pathway, and (2) the perceptual and response pathways are functionally interconnected. In
more general terms, access for a perceptual pathway output requires that these two condi-



tions be met not just for a specific response pathway, but for arbitrary response pathways
(e.g., pathways for naming, choice, evaluation, working memory, etc.). In Mozer and Co-
lagrosso (in preparation) we characterize the sufficiency requirements of condition 1; they
involve a representation of low entropy that stays active for long enough that the represen-
tation can propagate to the next pathway.

As we will show, a briefly presented stimulus fails to achieve a representation that supports
choice and naming responses. Nonetheless, the stimulus evokes activity in the perceptual
pathway. Because perceptual priming depends on the magnitude of the activation in the
perceptual pathway, not on the activation being communicated to response pathways, the
framework is consistent with the notion of priming occurring in the absence of awareness.

4.1 Simulation of Bar and Biederman (1998)

Bar and Biederman (1998) presented a sequence of masked line drawings of objects and
asked participants to name the objects, even if they had to guess. If the guess was incorrect,
participants were required to choose the object name from a set of four alternatives. Unbe-
knownst to the participant, some of the drawings in the series were repeated, and Bar and
Biederman were interested in whether participants would benefit from the first presenta-
tion even if it could not be identified. The repeated objects could be the same or a different
exemplar of the object, and it could appear in either the same or a different display position.

Participants were able to name 13.5% of drawings on presentation 1, but accuracy jumped
to 34.5% on presentation 2. Accuracy did improve, though not as much, if the same shape
was presented in a different position, but not if a different drawing of the same object
was presented, suggesting a locus of priming early in the visual stream. The improvement
in accuracy is not due to practice in general, because accuracy rose only 4.0% for novel
control objects over the course of the experiment. The priming is firmly subliminal, because
participants were not only unable to name objects on the first presentation, but their four-
alternative forced choice (4AFC) performance was not much above chance (28.5%).

To model these phenomena, we created a response pathway with fifty states representing
names of objects that are used in the experiment, e.g., chair and lamp. We also created a
perceptual pathway with states representing visual patterns that correspond to the names
in the response pathway. Following the experimental design, every object identity was
instantiated in two distinct shapes, and every shape could be in one of nine different visual-
field positions, leading to 900 distinct states in the perceptual pathway to model the possible
visual stimuli. The following parameters were fit to the data. If two perceptual states,xi

andxk are the same shape in different positions, they are assigned a similarity coefficient
γik = 0.95; all other similarity coefficients are zero. The association frequency,α, for
valid associations in the perceptual pathway was 22, and the response pathway 18. Other
parameters wereβp = .05, βr = .01, andη = 1.0.

The PIT model achieves a good fit to the human experimental data (Figure 2). Specifi-
cally, priming is greatest for the same shape in the same position, some priming occurs for
the same shape in a different position, and no substantial priming occurs for the different
shape. Figure 3a shows the time course of activation of a stimulus representation in the
perceptual pathway when the stimulus is presented for 50 iterations, on both the first and
third presentations. The third presentation was chosen instead of the second to make the
effect of priming clearer.

Even though a shape cannot be named on the first presentation, partial information about
the shape may nonetheless be available for report. The 4AFC test of Bar and Bieder-
man provides a more sensitive measure of residual stimulus information. In past work,
we modeled forced-choice tasks using a response pathway with only the alternatives under
consideration. However, in this experiment, forced-choice performance must be estimated
conditional onincorrect naming. In PIT framework, we achieve this using naming and
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Figure 2: (left panel) Data from Bar and Biederman (1998) (right panel) Simulation of PIT. White
bar: accuracy on first presentation of a prime object. Black bars: the accuracy when the object is
repeated, either with the same or different shape, and in the same or different position. Grey bars:
accuracy for control objects at the beginning and the end of the experiment.

forced-choice output pathways having output distributionsN(t) andF (t), which are linked
via the perceptual state,Y p(t). F (t) must be reestimated with the evidence thatN(t) is
not the target state. This inference problem is intractable. We therefore used a shortcut in
which a single response pathway is used, augmented with a simple three-node belief net
(Figure 3b) to capture the dependence between naming and forced choice. The belief net
has a response pathway nodeY r(t) connected toF (t) andN(t), with conditional distribu-
tion P (N(t) = ni|Y r(t) = yj) = θδij + (1 − θ)/|Y r|, and an analogous distribution for
P (F (t) = fi|Y r(t) = yj). The free parameterθ determines how veridically naming and
forced-choice actions reflect response-pathway output. Over a range ofθ, θ < 1, the model
obtains forced-choice performance near chance on the first presentation when the naming
response is incorrect. For example, withθ = 0.72, the model produces a forced-choice
accuracy on presentation 1 of 26.1%. (Interestingly, the model also produces below chance
performance on presentation 2 if the object is not named correctly—23.5%—which is also
found in the human data—20.0%.) Thus, by the stringent criterion of 4AFC, the model
shows no access consciousness, and therefore illustrates a dissociation between priming
and access consciousness. In our simulation, we followed the procedure of Bar and Bieder-
man by including distractor alternatives with visual and semantic similarity to the target.
These distractors are critical: with unrelated distractors, the model’s 4AFC performance is
significantly above chance, illustrating that a perceptual representation can be adequate to
support some responses but not others, as Farah et al. (1994) also argued.

4.2 Simulation of Abrams and Greenwald (2000)

During an initial phase of the experiment, participants categorized 24 clearly visible target
words as pleasant (e.g.,HUMOR) or unpleasant (e.g.,SMUT). They became quite familiar
with the task by categorizing each word a total of eight times. In a second phase, partici-
pants were asked to classify the same targets and were given a response deadline to induce
errors. The targets were preceded by masked primes that could not be identified. Of interest
is theeffective valence(or EV) of the target for different prime types, defined as the error
rate difference between unpleasant and pleasant targets. A positive (negative) EV indicates
that responses are biased toward a pleasant (unpleasant) interpretation by the prime. As one
would expect, pleasant primes resulted in a positive EV, unpleasant primes in a negative EV.
Of critical interest is the finding that a nonword prime formed by recombining two pleas-
ant targets (e.g.,HULIP from HUMOR and TULIP) or unpleasant targets (e.g.,BIUT from
BILE andSMUT) also served to bias the targets. More surprising, a positive EV resulted
from unpleasant prime words formed by recombining two pleasant targets (TUMOR from
TULIP and HUMOR), indicating that subliminal priming arises from word fragments, not
words as unitary entities, and providing further evidence for an early locus of subliminal
priming. Note that the results depend critically on the first phase of the experiment, which
gave participants extensive practice on a relatively small set of words that were then used
as and recombined to form primes. Words not studied in the first phase (orphans) provided
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Figure 4:Effective valence of primes in the Abrams and Greenwald (2000) experiment for human
subjects (black bars) and PIT model (grey bars).HULIP-type primes are almost as strong as target
repetitions, andTUMOR-type primes have a positive valence, contrary to the meaning of the word.

no significant EV effect when used as primes.

In this simulation, we used a three pathway model: a perceptual pathway that maps vi-
sual patterns to orthography with 200 input states corresponding both to words, nonwords,
and nonword recombinations of words; a semantic pathway that maps to 100 distinct lex-
ical/semantic states; and a judgement pathway that maps to two responses, pleasant and
unpleasant. In the perceptual pathway, similarity structure was based on letter overlap,
so thatHULIP was similar to bothTULIP and HUMOR, with γ = 0.837. No similarity
was assumed in the semantic state representation; consistent with the previous simulation,
βp = .05, βs = .01, βj = .01, andη = .01. At the outset of the simulation,α frequencies
for correct associations were 15, 19, and 25 in the perceptual, semantic, and judgement
pathways. The initial phase of the experiment was simulated by repeated supraliminal
presentation of words, which increased the association frequencies in all three pathways
through the∆αij learning rule.

Long-term supraliminal priming is essential in establishing the association strengths, as
we’ll explain. Short-term subliminal priming also plays a key role in the experiment. Dur-
ing the second phase of the experiment, residual activity from the prime—primarily in the
judgement pathway—biases the response to the target. Residual activation of the prime
is present even if the representation of the prime does not reach sufficient strength that it
could be named or otherwise reported.

The outcome of the simulation is consistent with the human data (Figure 4). When a
HULIP-type prime is presented,HUMOR and TULIP become active in the semantic path-
way because of their visual similarity toHULIP. Partial activation of these two practiced
words pushes the judgement pathway toward a pleasant response, resulting in a positive
EV. When aTUMOR-type prime is presented, three different words become active in the
semantic pathway:HUMOR, TULIP, andTUMOR itself. AlthoughTUMOR is more active, it
was not one of the words studied during the initial phase of the experiment, and as a result,
it has a relatively weak association to the unpleasant judgement, in contrast to the other
two words which have strong associations to the pleasant judgement. Orphan primes have
little effect because they were not studied during the initial phase of the experiment, and
consequently their association to pleasant and unpleasant judgements is also weak. In sum-
mary, activation of the prime along a critical, well-practiced pathway may not be sufficient
to support an overt naming response, yet it may be sufficient to bias the processing of the



immediately following target.

5 Discussion

An important contribution of this work has been to demonstrate that specific experimental
results relating to access consciousness and subliminal priming can be interpreted in a con-
crete computational framework. By necessity, the PIT framework, which we previously
used to model supraliminal priming data, predicts the existence of subliminal priming,
because the mechanisms giving rise to priming depend on degree of activation of a rep-
resentation, whereas the processes giving rise to access consciousness also depend on the
temporal persistence of a representation.

Another contribution of this work has been to argue that two previous computational mod-
els each tell only part of the story. Farah et al. argue that quality of representation is
critical; Dehaene et al. argue that pathways to communicate representations is critical. The
PIT framework argues thatbothof these features are necessary for access consciousness.

Although the PIT framework is not completely developed, it nonetheless makes a clear
prediction: that subliminal priming is can never be stronger than supraliminal priming,
because the maximal activation of subliminal primes is never greater than that of supral-
iminal primes. One might argue that many theoretical frameworks might predict the same,
but no other computational model is sufficiently well developed—in terms of addressing
both priming and access consciousness—to make this prediction.

In its current stage of development, a weakness of the PIT framework is that it is silent
as to how perceptual and response pathways become flexibly interconnected based on task
demands. However, the PIT framework is not alone in failing to address this critical issue:
The Dehaene et al. model suggests that once a representation enters the global workspace,
all response modules can access it, but the model does not specify how the appropriate per-
ceptual module wins the competition to enter the global workspace, or how the appropriate
response module is activated. Clearly, flexible cognitive control structures that perform
these functions are intricately related to mechanisms of consciousness.
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